COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparable effects of alendronate and strontium ranelate on femur in ovariectomized rats.

This study compared the effects of alendronate (ALN) and strontium ranelate (SR) on bone mineral density (BMD), bone histomorphometry, and biomechanics in ovariectomized (OVX) rats. We randomly assigned 48 3-month-old female Sprague-Dawley rats to four groups: sham, OVX, ALN, and SR. Rats in the OVX, ALN, and SR groups received bilateral OVX. Rats in the ALN and SR groups were orally administrated ALN (7 mg/kg/week) and SR (500 mg/kg/day). Rats in the sham and OVX groups were treated with saline. All treatments continued for 12 weeks. Femoral BMD examination, distal femoral bone histomorphometry analysis, and biomechanical tests at the femoral diaphysis and metaphysis were performed to evaluate the effects of treatments in OVX rats. Results showed that both ALN and SR significantly increased femoral BMD (total femur, diaphyseal BMD, and distal metaphyseal BMD), distal femoral bone histomorphometric parameters (BV/TV, Tb.N, and Tb.Th), and femoral biomechanical parameters (maximum load, failure load, stiffness) compared with the OVX group (P < 0.05). No differences were found between ALN and SR in increasing femoral BMD, distal femoral bone histomorphometric parameters (BV/TV, Tb.N, and Tb.Th), and femoral diaphysis biomechanical parameters (maximum load, failure load, stiffness) (P > 0.05). The SR group was inferior to the ALN group in femoral metaphysis biomechanical parameters (P < 0.05). In conclusion, ALN (7 mg/kg/week) and SR (500 mg/kg/day) have similar effects by increasing BMD, distal femoral bone histomorphometric parameters, and femoral metaphysis biomechanical properties. Although ALN has greater effects than SR on distal femoral metaphysis biomechanical properties, in general, ALN and SR have comparable effects on the femur in OVX rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app