JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

α-Linolenic acid attenuates doxorubicin-induced cardiotoxicity in rats through suppression of oxidative stress and apoptosis.

Doxorubicin (DOX), a widely used anti-tumor drug, can give rise to severe cardiotoxicity by oxidative stress and cell apoptosis, which restricts its clinical application. α-Linolenic acid (ALA) has been shown to serve as a potent cardioprotective agent. The aim of this study was to explore the protective effects of ALA on DOX-induced cardiotoxicity and the underlying molecular mechanisms for this cardioprotection in rats. Rats were randomly divided into four groups and administrated with normal saline, ALA (500 µg/kg), DOX (2.5 mg/kg), or ALA (500 µg/kg) plus DOX (2.5 mg/kg) for 17 days. The results showed that DOX treatment significantly increased the heart weight/body weight, liver wet weight (WW)/dry weight (DW), lung WW/DW, serum levels of brain natriuretic peptide, creatine kinase-MB, lactate dehydrogenase, and cardiac troponin I, myocardial necrosis and myocardial malondialdehyde content, and induced the mRNA expression of Nrf2 in the nucleus, cleaved caspase-3, Bax, and superoxide dismutase (SOD). In addition, DOX led to a significant decrease in left ventricular end-diastolic volume, stroke volume, ejection fraction, SOD, glutathione-peroxidase, catalase, as well as the expression of Kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm, phospho-AKT, phospho-ERK, and Bcl-2. Co-treatment with ALA significantly eliminated these changes induced by DOX except further reduction of Keap1 and elevation of Nrf2 and SOD mRNA. These results showed the cardioprotective effects of ALA on DOX-induced cardiotoxicity in rats. The mechanisms might be associated with the enhancement of antioxidant defense system through activating Keap1/Nrf2 pathway and anti-apoptosis through activating protein kinase B/extracellular signal regulated kinase pathway. Our results suggested a promising future of ALA-based preventions and therapies for myocardial damage after administration of DOX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app