Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Circulating dipeptidyl peptidase IV activity correlates with cardiac dysfunction in human and experimental heart failure.

BACKGROUND: The present study addresses the hypothesis that the activity of dipeptidyl peptidase IV (DPPIV), an enzyme that inactivates peptides that possess cardioprotective actions, correlates with adverse outcomes in heart failure (HF). The therapeutic potential of DPPIV inhibition in preventing cardiac dysfunction is also investigated.

METHODS AND RESULTS: Measurements of DPPIV activity in blood samples obtained from 190 patients with HF and 42 controls demonstrated that patients with HF exhibited an increase of ≈130% in circulating DPPIV activity compared with healthy subjects. Furthermore, an inverse correlation was observed between serum DPPIV activity and left ventricular (LV) ejection fraction in patients with HF. Similarly, radiofrequency LV ablation-induced HF rats displayed higher DPPIV activity in the plasma (≈50%) and heart tissue (≈3.5-fold) compared with sham-operated rats. Moreover, positive correlations were observed between the plasma DPPIV activity and LV end-diastolic pressure and lung congestion. Two days after surgery, 1 group of LV ablation-induced HF rats was treated with the DPPIV inhibitor sitagliptin (40 mg/kg BID) for 6 weeks, whereas the remaining rats were administered water. Hemodynamic measurements demonstrated that radiofrequency LV-ablated rats treated with sitagliptin exhibited a significant attenuation of HF-related cardiac dysfunction, including LV end-diastolic pressure, systolic performance, and chamber stiffness. Sitagliptin treatment also attenuated cardiac remodeling and cardiomyocyte apoptosis and minimized pulmonary congestion.

CONCLUSIONS: Collectively, the results presented herein associate circulating DPPIV activity with poorer cardiovascular outcomes in human and experimental HF. Moreover, the results demonstrate that long-term DPPIV inhibition mitigates the development and progression of HF in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app