JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement.

Brain Research 2013 September 6
We investigated whether anodal transcranial direct current stimulation (tDCS) applied to the motor cortex during non-exhaustive active or passive movements enhances corticomotor excitability after tDCS or whether it reduces post-exercise depression (PED) after non-exhaustive active or passive movements if PED was observed without tDCS. Nine healthy subjects participated in this study. Anodal tDCS with a current of 2 mA was applied to the left scalp over the primary motor area. All subjects underwent the following five interventions: tDCS delivered for 10 min during relaxation (tDCS condition) and repetitive voluntary and passive finger abduction-adduction movements, each performed without and with tDCS for 10 min (active condition, tDCS+active condition, passive condition, tDCS+passive condition). The active movements were performed at 10% maximum voluntary contraction. Motor evoked potentials (MEPs) were recorded from the right first dorsal interosseus muscle before the intervention (pre-intervention) and 2 and 10 min after the intervention (post-2 min and post-10 min, respectively). Under the tDCS condition, the MEP amplitudes at post-2 and -10 min were significantly increased compared with those before the intervention. Under the active, passive, and tDCS+active conditions, the MEP amplitudes at post-2 min were significantly decreased compared with those before the interventions. Under the tDCS+passive condition, the MEP amplitude remained unchanged. These results demonstrated that anodal tDCS did not reduce PED after active movements but after passive movements and that the anodal tDCS effects were highly dependent on the state of the subject during stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app