JOURNAL ARTICLE

Adverse effects of hemorrhagic shock resuscitation with stored blood are ameliorated by inhaled nitric oxide in lambs*

David M Baron, Arkadi Beloiartsev, Akito Nakagawa, Trejeeve Martyn, Christopher P Stowell, Rajeev Malhotra, Claire Mayeur, Kenneth D Bloch, Warren M Zapol
Critical Care Medicine 2013, 41 (11): 2492-501
23887236

OBJECTIVES: Transfusion of stored RBCs is associated with increased morbidity and mortality in trauma patients. Plasma hemoglobin scavenges nitric oxide, which can cause vasoconstriction, induce inflammation, and activate platelets. We hypothesized that transfusion of RBCs stored for prolonged periods would induce adverse effects (pulmonary vasoconstriction, tissue injury, inflammation, and platelet activation) in lambs subjected to severe hemorrhagic shock and that concurrent inhalation of nitric oxide would prevent these adverse effects.

DESIGN: Animal study.

SETTING: Research laboratory at the Massachusetts General Hospital, Boston, MA.

SUBJECTS: Seventeen awake Polypay-breed lambs.

INTERVENTIONS: Lambs were subjected to 2 hours of hemorrhagic shock by acutely withdrawing 50% of their blood volume. Lambs were resuscitated with autologous RBCs stored for 2 hours or less (fresh) or 39 ± 2 (mean ± SD) days (stored). Stored RBCs were administered with or without breathing nitric oxide (80 ppm) during resuscitation and for 21 hours thereafter.

MEASUREMENTS AND MAIN RESULTS: We measured hemodynamic and oxygenation variables, markers of tissue injury and inflammation, plasma hemoglobin concentrations, and platelet activation. Peak pulmonary arterial pressure was higher after resuscitation with stored than with fresh RBCs (24 ± 4 vs 14 ± 2 mm Hg, p < 0.001) and correlated with peak plasma hemoglobin concentrations (R = 0.56, p = 0.003). At 21 hours after resuscitation, pulmonary myeloperoxidase activity was higher in lambs resuscitated with stored than with fresh RBCs (11 ± 2 vs 4 ± 1 U/g, p = 0.007). Furthermore, transfusion of stored RBCs increased plasma markers of tissue injury and sensitized platelets to adenosine diphosphate activation. Breathing nitric oxide prevented the pulmonary hypertension and attenuated the pulmonary myeloperoxidase activity, as well as tissue injury and sensitization of platelets to adenosine diphosphate.

CONCLUSIONS: Our data suggest that resuscitation of lambs from hemorrhagic shock with autologous stored RBCs induces pulmonary hypertension and inflammation, which can be ameliorated by breathing nitric oxide.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23887236
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"