Quantification of cardiac sympathetic nerve density with N-11C-guanyl-meta-octopamine and tracer kinetic analysis

David M Raffel, Robert A Koeppe, Yong-Woon Jung, Guie Gu, Keun Sam Jang, Phillip S Sherman, Carole A Quesada
Journal of Nuclear Medicine 2013, 54 (9): 1645-52

UNLABELLED: Most cardiac sympathetic nerve radiotracers are substrates of the norepinephrine transporter (NET). Existing tracers such as (123)I-metaiodobenzylguanidine ((123)I-MIBG) and (11)C-(-)-meta-hydroxyephedrine ((11)C-HED) are flow-limited tracers because of their rapid NET transport rates. This prevents successful application of kinetic analysis techniques and causes semiquantitative measures of tracer retention to be insensitive to mild-to-moderate nerve losses. N-(11)C-guanyl-(-)-meta-octopamine ((11)C-GMO) has a much slower NET transport rate and is trapped in storage vesicles. The goal of this study was to determine whether analyses of (11)C-GMO kinetics could provide robust and sensitive measures of regional cardiac sympathetic nerve densities.

METHODS: PET studies were performed in a rhesus macaque monkey under control conditions or after intravenous infusion of the NET inhibitor desipramine (DMI). Five desipramine dose levels were used to establish a range of available cardiac NET levels. Compartmental modeling of (11)C-GMO kinetics yielded estimates of the rate constants K1 (mL/min/g), k2 (min(-1)), and k3 (min(-1)). These values were used to calculate a net uptake rate constant K(i) (mL/min/g) = (K1k3)/(k2 + k3). In addition, Patlak graphical analyses of (11)C-GMO kinetics yielded Patlak slopes K(p) (mL/min/g), which represent alternative measurements of the net uptake rate constant K(i). (11)C-GMO kinetics in isolated rat hearts were also measured for comparison with other tracers.

RESULTS: In isolated rat hearts, the neuronal uptake rate of (11)C-GMO was 8 times slower than (11)C-HED and 12 times slower than (11)C-MIBG. (11)C-GMO also had a long neuronal retention time (>200 h). Compartmental modeling of (11)C-GMO kinetics in the monkey heart proved stable under all conditions. Calculated net uptake rate constants K(i) tracked desipramine-induced reductions of available NET in a dose-dependent manner, with a half maximal inhibitory concentration (IC50) of 0.087 ± 0.012 mg of desipramine per kilogram. Patlak analysis provided highly linear Patlak plots, and the Patlak slopes Kp also declined in a dose-dependent manner (IC50 = 0.068 ± 0.010 mg of desipramine per kilogram).

CONCLUSION: Compartmental modeling and Patlak analysis of (11)C-GMO kinetics each provided quantitative parameters that accurately tracked changes in cardiac NET levels. These results strongly suggest that PET studies with (11)C-GMO can provide robust and sensitive quantitative measures of regional cardiac sympathetic nerve densities in human hearts.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"