JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of gap junction-mediated communications in regulating large-scale chromatin configuration remodeling and embryonic developmental competence acquisition in fully grown bovine oocyte.

PURPOSE: This study was aimed to test the hypothesis that gap junction mediated communications (GJC) are required to allow the progressive chromatin configuration remodeling (from GV1 to GV3) process to occur in fully grown oocytes in order to gain the final step of developmental competence acquisition, and that a premature disruption of GJC can alter this process.

METHODS: Bovine cumulus-oocytes complexes collected from medium antral follicles were cultured for 2, 4, 6 and 8 h in the presence of 10(-4) IU/ml of r-hFSH and with 2 mM of the non-selective PDE inhibitor 3-isobutyl-1-methyl-xanthine (IBMX) to prevent meiotic resumption. GJC functionality and chromatin configuration were monitored during the culture period. After meiotic arrest, the developmental capability of oocytes was assessed after IVM and IVF.

RESULTS: IBMX was effective in significantly sustaining GJC up to 6 h and maintaining meiotic arrest, when compared to control group. Moreover, the percentage of oocytes with less condensed chromatin (GV1) decreased within 4 h of culture, while the proportion of GV2 oocytes gradually increased up to 6 h. Interestingly, a decline in the proportion of GV2 oocytes and an increase in the proportion of GV3 oocytes were observed after 6 h of culture, when the major drop of GJC occurred. On the contrary, when GJC were uncoupled by adding 3 mM of 1-heptanol or through cumulus cells removal, chromatin condensation occurred rapidly throughout the culture period, more promptly in denuded oocytes. Moreover, the maintenance of GJC during meiotic arrest was accompanied by a significant increase of developmental competence compared to the control, as indicated by a higher percentage of hatched blastocysts and blastocyst cell number.

CONCLUSIONS: Altogether, our data indicate that both paracrine and junctional mechanisms are involved in modulating large-scale chromatin structure during the final phase of oocyte differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app