COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

In vitro comparison of the delivery of gaseous microemboli and hemodynamic energy for a diagonal and a roller pump during simulated infantile cardiopulmonary bypass procedures.

Artificial Organs 2014 January
Cardiopulmonary bypass (CPB) is used for a variety of procedures in pediatric patients. Flow settings of the CPB pump have dramatic effects on patient outcome, and gaseous microemboli delivery within the CPB circuit has been linked to neurological complications. To ensure the ongoing improvement of pediatric CPB, consistent evaluation and improvement of the equipment is necessary. In this study we analyze the Jostra HL-20 roller pump (Jostra USA, Austin, TX, USA) and a Medos Deltastream DP3 diagonal pump (MEDOS Medizintechnik AG, Stolberg, Germany) which has not yet received Food and Drug Administration approval. An infant CPB model with heparinized human blood is used to quantify the gaseous microemboli delivery (via an Emboli Detection and Classification Quantifier), as well as the hemodynamic energy delivered under flow rates of 400, 800, and 1200 mL/min. Results show that at most flow settings the DP3 delivers fewer microemboli than the Jostra roller pump at the pre-oxygenator site, with an exception at 1200 mL/min under pulsatile mode. The total volume and the number of gaseous microemboli greater than 40 μm in diameter were lower in the DP3 group. The HL-20 exhibits less stolen blood flow (except at 1200 mL/min) and oxygenator pressure drops in both pulsatile and nonpulsatile mode. Additionally, under pulsatile flow the DP3 delivers greater surplus hemodynamic energy. Both pumps produce relatively few microemboli and deliver adequate hemodynamic energy to the pseudo-patient, with the DP3 performing slightly better under most flow settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app