Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Aqueous extracts of two varieties of ginger (Zingiber officinale) inhibit angiotensin I-converting enzyme, iron(II), and sodium nitroprusside-induced lipid peroxidation in the rat heart in vitro.

Ginger has reportedly been used in folk medicine for the management and prevention of hypertension and other cardiovascular diseases. Therefore, this study sought to investigate the inhibitory effect of aqueous extracts of two varieties of ginger on a key enzyme linked to hypertension (angiotensin I-converting enzyme [ACE]), and on pro-oxidants [Fe(2+) and sodium nitroprusside (SNP)] which have been shown to induce lipid peroxidation in the rat's isolated heart in vitro. Aqueous extracts (0.05 mg/mL) of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) were prepared and the ability of the extracts to inhibit ACE along with Fe(2+)- and SNP-induced lipid peroxidation was determined in rat's heart in vitro. Results revealed that both extracts inhibited ACE in a dose-dependent manner (25-125 μg/mL). However, red ginger extract (EC50=27.5 μg/mL) had a significantly (P<.05) higher inhibitory effect on ACE than white ginger extract (EC50=87.0 μg/mL). Furthermore, incubation of the rat's heart in the presence of Fe(2+) and SNP caused a significant increase (P<.05) in the malondialdehyde (MDA) content of the heart homogenates, while the introduction of the ginger extracts (78-313 μg/mL) caused a dose-dependent decrease in the MDA content of the stressed heart homogenates. This suggests that the possible mechanism through which ginger exerts its antihypertensive properties may be through inhibition of ACE activity and prevention of lipid peroxidation in the heart. Furthermore, red ginger showed stronger inhibition of ACE than white ginger. Additionally, it should be noted that these protective properties of the ginger varieties could be attributed to their polyphenol contents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app