Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response.

Expansins are non-hydrolytic cell wall-loosening proteins involved in a variety of plant developmental processes during which cell wall modification occurs. Cell wall remodeling proteins including expansins have been suggested to be involved in cell separation to facilitate the emergence of lateral roots (LRs) through the overlaying tissues of the primary root. LBD18/ASL20 activates EXPANSINA14 (EXPA14) expression by directly binding to the EXPA14 promoter to enhance LR emergence in Arabidopsis thaliana. Here we show that EXPA17 is another target gene regulated by LBD18 to promote LR formation in Arabidopsis. We showed that nuclear translocation of the LBD18:GR fusion protein expressed under the Cauliflower mosaic virus (CaMV) 35S promoter or under the LBD18 promoter by dexamethasone treatment results in an increase in EXPA17 transcript levels. β-Glucuronidase (GUS) expression under the EXPA17 promoter, which is detected only in the roots of the wild type, was reduced in the LR primordium and overlaying tissues in an lbd18 mutant background. The number of emerged LRs of the EXPA17 RNAi (RNA interference) Arabidopsis lines was significantly lower than that of the wild type. Overexpression of EXPA17 in Arabidopsis increased the density of emerged LRs in the presence of auxin compared with the wild type. LR induction experiments with a gravitropic stimulus showed that LR emergence is delayed in the EXPA17 RNAi plants compared with the wild type. In addition, EXPA4 expression was also detected in overlaying tissues of the LR primordium and was inducible by LBD18. Taken together, these results support the notion that LBD18 up-regulates a subset of EXP genes to enhance cell separation to promote LR emergence in Arabidopsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app