Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hes1 and Hes5 regulate vascular remodeling and arterial specification of endothelial cells in brain vascular development.

The vascular system is the first organ to form in the developing mammalian embryo. The Notch signaling pathway is an evolutionarily conserved signaling mechanism essential for proper embryonic development in almost all vertebrate organs. The analysis of targeted mouse mutants has demonstrated essential roles of the Notch signaling pathway in embryonic vascular development. However, Notch signaling-deficient mice have so far not been examined in detail in the head region. The bHLH genes Hes1 and Hes5 are essential effectors for Notch signaling, which regulate the maintenance of progenitor cells and the timing of their differentiation in various tissues and organs. Here, we report that endothelial-specific Hes1 and Hes5 mutant embryos exhibited defective vascular remodeling in the brain. In addition, arterial identity of endothelial cells was partially lost in the brain of these mutant mice. These data suggest that Hes1 and Hes5 regulate vascular remodeling and arterial fate specification of endothelial cells in the development of the brain. Hes1 and Hes5 represent critical transducers of Notch signals in brain vascular development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app