Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Persistent mechanical allodynia positively correlates with an increase in activated microglia and increased P-p38 mitogen-activated protein kinase activation in streptozotocin-induced diabetic rats.

BACKGROUND: In experimental early painful diabetic neuropathy, persistent hyperglycaemia induces dys-regulated sodium channel (Navs) expression in the dorsal root ganglion (DRG) and activates microglia in the spinal dorsal horn (SDH). However, information on diabetes-induced chronic neuropathic pain is limited. Therefore, we investigated abnormal Navs in the DRG and activated glial cells in the SDH of diabetic rats with chronic neuropathic pain.

METHODS: Sixty-six rats were divided into diabetic and control groups: control rats (n = 18; 1 mL of normal saline via the right femoral vein) and diabetic rats [n = 48; 60 mg/kg streptozotocin (STZ) via the right femoral vein]. Hindpaw behavioural tests, Navs expression in the DRG, activation of glial cells in the SDH and the number of neurons in the SDH were measured at 1 and 2 weeks, and 1, 2, 3 and 6 months following saline and STZ administration.

RESULTS: All diabetic rats exhibited hyperglycaemia from day 7 to 6 months. The diabetic rats decreased withdrawal threshold to mechanical stimuli but had blunted responses to thermal stimuli. Consistent up-regulation of Nav1.3 and down-regulation of Nav1.8 was observed. Microglial cells were activated early in the SDH and lasted for 6 months. A positive correlation between mechanical allodynia, Nav1.3 and microglial activation was observed. In addition, microglia activation in the SDH of STZ-induced diabetes was mediated, in part, by phosphorylation of p-38 mitogen-activated protein kinase.

CONCLUSIONS: Diabetic rats showed hindpaw mechanical allodynia for 6 months. Persistent mechanical allodynia was positively associated with sustained increased activation of Nav1.3 and increased p38 phosphorylation in activated microglia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app