JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway.

Kidney International 2013 December
The TGF-β/Smad3 pathway plays a major role in tissue fibrosis, but the precise mechanisms are not fully understood. Here we identified microRNA miR-433 as an important component of TGF-β/Smad3-driven renal fibrosis. The miR-433 was upregulated following unilateral ureteral obstruction, a model of aggressive renal fibrosis. In vitro, overexpression of miR-433 enhanced TGF-β1-induced fibrosis, whereas knockdown of miR-433 suppressed this response. Furthermore, Smad3, but not Smad2, bound to the miR-433 promoter to induce its expression. Delivery of an miR-433 knockdown plasmid to the kidney by ultrasound microbubble-mediated gene transfer suppressed the induction and progression of fibrosis in the obstruction model. The antizyme inhibitor Azin1, an important regulator of polyamine synthesis, was identified as a target of miR-433. Overexpression of miR-433 suppressed Azin1 expression, while, in turn, Azin1 overexpression suppressed TGF-β signaling and the fibrotic response. Thus, miR-433 is an important component of TGF-β/Smad3-induced renal fibrosis through the induction of a positive feedback loop to amplify TGF-β/Smad3 signaling, and may be a potential therapeutic target in tissue fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app