JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography.

Cross sectional tomographic systems based on cylindrically focused transducers are widely used in optoacoustic (photoacoustic) imaging due to important advantages they provide such as high-cross sectional resolution, real-time imaging capacity, and high-throughput performance. Tomographic images in such systems are commonly obtained by means of two-dimensional (2-D) reconstruction procedures assuming point-like detectors, and volumetric (whole-body) imaging is performed by superimposing the cross sectional images for different positions along the scanning direction. Such reconstruction strategy generally leads to in-plane and out-of-plane artifacts as well as significant quantification errors. Herein, we introduce two equivalent full three-dimensional (3-D) models capable of accounting for the shape of cylindrically focused transducers. The performance of these models in 3-D reconstructions considering several scanning positions is analyzed in this work. Improvements of the results rendered with the introduced reconstruction procedure as compared with the 2-D-based approach are described and discussed for simulations and experiments with phantoms and biological tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app