JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Angiotensin II-converting enzyme inhibition improves survival, ventricular remodeling, and myocardial energetics in experimental aortic regurgitation.

BACKGROUND: Aortic valve regurgitation (AR) is a volume-overload disease causing severe eccentric left ventricular (LV) hypertrophy and eventually heart failure. There is currently no approved drug to treat patients with AR. Many vasodilators including angiotensin-converting enzyme inhibitors have been evaluated in clinical trials, but although some results were promising, others were inconclusive. Overall, no drug has yet been able to improve clinical outcome in AR and the controversy remains. We have previously shown in an animal model that captopril (Cpt) reduced LV hypertrophy and protected LV systolic function, but we had not evaluated the clinical outcome. This protocol was designed to evaluate the effects of a long-term Cpt treatment on survival in the same animal model of severe aortic valve regurgitation.

METHODS AND RESULTS: Forty Wistar rats with AR were treated or untreated with Cpt (1 g/L in drinking water) for a period of 7 months to evaluate survival, myocardial remodeling, and function by echocardiography as well as myocardial metabolism by µ positron emission tomography scan. Survival was significantly improved in Cpt-treated animals with a survival benefit visible as soon as after 4 months of treatment. Cpt reduced LV dilatation and LV hypertrophy. It also significantly improved the myocardial metabolic profile by restoring the level of fatty acids metabolic enzymes and use.

CONCLUSIONS: In a controlled animal model of pure severe aortic valve regurgitation, Cpt treatment reduced LV remodeling and LV hypertrophy and improved myocardial metabolic profile and survival. These results support the need to reevaluate the role of angiotensin-converting enzyme inhibitors in humans with AR in a large, carefully designed prospective clinical trial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app