Quality by design approach for viral clearance by protein a chromatography

Min Zhang, George R Miesegaes, Michael Lee, Daniel Coleman, Bin Yang, Melody Trexler-Schmidt, Lenore Norling, Philip Lester, Kurt A Brorson, Qi Chen
Biotechnology and Bioengineering 2014, 111 (1): 95-103
Protein A chromatography is widely used as a capture step in monoclonal antibody (mAb) purification processes. Antibodies and Fc fusion proteins can be efficiently purified from the majority of other complex components in harvested cell culture fluid (HCCF). Protein A chromatography is also capable of removing modest levels of viruses and is often validated for viral clearance. Historical data mining of Genentech and FDA/CDER databases systematically evaluated the removal of model viruses by Protein A chromatography. First, we found that for each model virus, removal by Protein A chromatography varies significantly across mAbs, while remains consistent within a specific mAb product, even across the acceptable ranges of the process parameters. In addition, our analysis revealed a correlation between retrovirus and parvovirus removal, with retrovirus data generally possessing a greater clearance factor. Finally, we describe a multivariate approach used to evaluate process parameter impacts on viral clearance, based on the levels of retrovirus-like particles (RVLP) present among process characterization study samples. It was shown that RVLP removal by Protein A is robust, that is, parameter effects were not observed across the ranges tested. Robustness of RVLP removal by Protein A also correlates with that for other model viruses such as X-MuLV, MMV, and SV40. The data supports that evaluating RVLP removal using process characterization study samples can establish multivariate acceptable ranges for virus removal by the protein A step for QbD. By measuring RVLP instead of a model retrovirus, it may alleviate some of the technical and economic challenges associated with performing large, design-of-experiment (DoE)-type virus spiking studies. This approach could also serve to provide useful insight when designing strategies to ensure viral safety in the manufacturing of a biopharmaceutical product.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"