Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Locked plating of comminuted distal femur fractures: does unlocked screw placement affect stability and failure?

OBJECTIVES: Locked plates provide greater stiffness, possibly at the expense of fracture healing. The purpose of this study is to evaluate construct stiffness of distal femur plates as a function of unlocked screw position in cadaveric distal femur fractures.

METHODS: Osteoporotic cadaveric femurs were used. Four diaphyseal bridge plate constructs were created using 13-hole distal femur locking plates, all with identical condylar fixation. Constructs included all locked (AL), all unlocked (AUL), proximal unlocked (PUL), and distally unlocked (DUL) groups. Constructs underwent cyclic axial loading with increasing force per interval. Data were gathered on axial stiffness, torsional stiffness, maximum torque required for 5-degree external rotation, and axial force to failure.

RESULTS: Twenty-one specimens were divided into AL, AUL, PUL, and DUL groups. Axial stiffness was not significantly different between the constructs. AL and PUL demonstrated greater torsional stiffness, maximum torque, and force to failure than AUL and AL showed greater final torsional stiffness and failure force than DUL (P < 0.05). AL and PUL had similar axial, torsion, and failure measures, as did AUL and DUL constructs. All but 2 specimens fractured before medial gap closure during failure tests. Drop-offs on load-displacement curves confirmed all failures.

CONCLUSIONS: Only the screw nearest the gap had significant effect on torsional and failure stiffness but not axial stiffness. Construct mechanics depended on the type of screw placed in this position. This screw nearest the fracture dictates working length stiffness when the working length itself is constant and in turn determines overall construct stiffness in osteoporotic bone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app