JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reduced graphene oxide-TaON composite as a high-performance counter electrode for Co(bpy)3(3+/2+)-mediated dye-sensitized solar cells.

We report herein the investigation of TaON nanoparticles incorporating a reduced graphene oxide (RGO) nanocomposite as a counter electrode for application in Co(bpy)3(3+/2+) (bpy = 2,2'-bipyridine)-mediated dye-sensitized solar cells (DSSCs). The RGO-TaON nanocomposite has been prepared by mixing graphene oxide (GO) and presynthesized TaON nanoparticles in ethanol/water followed by the facile hydrazine hydrate reduction of GO to RGO. Compared with RGO or TaON alone, the RGO-TaON nanocomposite shows a much higher electrocatalytic activity for the reduction of Co(bpy)3(3+) species owing to synergistic effects, resulting in significantly improved solar-cell performance when it is applied as the counter electrode in DSSCs. An efficiency of 7.65% for the DSSC with the RGO-TaON counter electrode is obtained, competing with the efficiency produced by the Pt counter electrode; additionally, the former exhibits a much better electrochemical stability than the latter in a Co(bpy)3(3+/2+) acetonitrile solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app