Effectiveness and potential ecological effects of offshore surface dispersant use during the Deepwater Horizon oil spill: a retrospective analysis of monitoring data

Adriana C Bejarano, Edwin Levine, Alan J Mearns
Environmental Monitoring and Assessment 2013, 185 (12): 10281-95
The Special Monitoring of Applied Response Technologies (SMART) program was used during the Deepwater Horizon oil spill as a strategy to monitor the effectiveness of sea surface dispersant use. Although SMART was implemented during aerial and vessel dispersant applications, this analysis centers on the effort of a special dispersant missions onboard the M/V International Peace, which evaluated the effectiveness of surface dispersant applications by vessel only. Water samples (n = 120) were collected from background sites, and under naturally and chemically dispersed oil slicks, and were analyzed for polycyclic aromatic hydrocarbons (TPAHs), total petroleum hydrocarbons (TPH), and a chemical marker of Corexit (dipropylene glycol n-butyl ether, DPnB). Water chemistry results were analyzed relative to SMART field assessments of dispersant effectiveness ("not effective," "effective," and "very effective"), based on in situ fluorometry. Chemistry data were also used to indirectly determine if the use of dispersants increased the risk of acute effects to water column biota, by comparison to toxicity benchmarks. TPAH and TPH concentrations in background, and naturally and chemically dispersed samples were extremely variable, and differences were not statistically detected across sample types. Ratios of TPAH and TPH between chemically and naturally dispersed samples provided a quantitative measure of dispersant effectiveness over natural oil dispersion alone, and were in reasonable agreement with SMART field assessments of dispersant effectiveness. Samples from "effective" and "very effective" dispersant applications had ratios of TPAH and TPH up to 35 and 64, respectively. In two samples from an "effective" dispersant application, TPHs and TPAHs exceeded acute benchmarks (0.81 mg/L and 8 μg/L, respectively), while none exceeded DPnB's chronic value (1,000 μg/L). Although the primary goal of the SMART program is to provide near real-time effectiveness data to the response, and not to address concerns regarding acute biological effects, the analyses presented here demonstrate that SMART can generate information of value to a larger scientific audience. A series of recommendations for future SMART planning are also provided.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"