JOURNAL ARTICLE

Optical transport and sensing in plexcitonic nanocavities

Olalla Pérez-González, Javier Aizpurua, Nerea Zabala
Optics Express 2013 July 1, 21 (13): 15847-58
23842371
We present a theoretical study of the optical properties of a strongly coupled metallic dimer when an ensemble of molecules is placed in the inter-particle cavity. The linking molecules are characterized by an excitonic transition which couples to the Bonding Dimer Plasmon (BDP) and the Bonding Quadrupolar Plasmon (BQP) resonances, arising from the hybridization of the dipolar and quadrupolar modes of the individual nanoparticles, respectively. As a consequence, both modes split into two coupled plasmon-exciton modes, so called plexcitons. The Charge Transfer Plasmon (CTP) resonance, involving plasmonic oscillations of the dimer as a whole, arises when the conductance of the excitonic junction is above a threshold value. The possibility of exploiting plexcitonic resonances for sensing is explored in detail. We find high sensitivity to the environment when different dielectric embedding media are considered. Contrary to standard methods, we propose a new framework for effective sensing based on the relative intensity of plexcitonic peaks.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23842371
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"