Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phosphatidylinositol 3-kinases inhibitor LY294002 potentiates the cytotoxic effects of doxorubicin, vincristine, and etoposide in a panel of cancer cell lines.

Many novel therapeutic approaches to overcome chemoresistance have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway. PI3K is a known stress response pathway which is involved in the regulation of cell survival, apoptosis, and growth. Inhibition of this pathway may possibly restore or augment the effectiveness of chemotherapy. Using three human malignant cell lines, we examined the effects of LY294002 (PI3K inhibitor) on chemotherapeutic agent-induced apoptosis and cytotoxicity. An antimicrotubule agent vincristine, a topoisomerase II inhibitor etoposide, and a DNA cross-linking agent doxorubicin were used accompanied with LY294002. Cell viability was determined by MTT assay, and the induction of apoptosis was assessed by immunoblotting of caspase-3. Blocking the PI3K/Akt cascade with a PI3K inhibitor LY294002 (10 μM) increased the cytotoxic effect of vincristine and doxorubicin on SK-OV-3 cell line. Furthermore, LY294002 showed a greater promoting effect in etoposide- and doxorubicin-induced cytotoxicity on MDA-MB-468 and A549 cells. The quantity of cleaved caspase-3 in cancer cells that had combination therapy was increased compared with that in the cells treated with each drug alone. We suggest that inhibitors of the PI3K/Akt pathway in combination with chemotherapeutic agents may induce cell death effectively and be a potent modality to treat various types of cancer. The effectiveness of such combination therapy is depending to the used cell line and class of anticancer drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app