OPEN IN READ APP
JOURNAL ARTICLE

Circadian adaptation of airline pilots during extended duration operations between the USA and Asia

Philippa Gander, Margo van den Berg, Hannah Mulrine, Leigh Signal, Jim Mangie
Chronobiology International 2013, 30 (8): 963-72
23834703
This study tracked circadian adaptation among airline pilots before, during, and after trips where they flew from Seattle (SEA) or Los Angeles (LAX) to Asia (7--9 time zones westward), spent 7--12 d in Asia, and then flew back to the USA. In Asia, pilots' exposures to local time cues and sleep opportunities were constrained by duty (short-haul flights crossing ≤ 1 time zone/24 h). Fourteen captains and 16 first officers participated (median age = 56 versus 48 yrs, p.U) < 0.001). Their sleep was monitored (actigraphy, duty/sleep diaries) from 3 d pre-trip to 5 d post-trip. For every flight, Karolinska Sleepiness and Samn-Perelli Fatigue scales and 5-min psychomotor vigilance task (PVT) tests were completed pre-flight and at top of descent (TOD). Participants had ≥ 3 d free of duty prior to outbound flight(s). From 72--24 h prior to departure (baseline sleep), mean total sleep/24 h (TST) = 7.00 h (SD = 1.18 h) and mean sleep efficiency = 87% (SD = 4.9%). Most pilots (23/30) flew direct to and from Asia, but 7 LAX-based pilots flew via a 1-d layover in Honolulu (HNL). On flights with ≥ 2 pilots, mean total in-flight sleep varied from 0.40 to 2.09 h outbound and from 0.74 to 1.88 h inbound. Duty patterns in Asia were variable, with ≤ 2 flights/d (mean flight duration = 3.53 h, SD = 0.53 h). TST on days 17 in Asia did not differ from baseline (p.F) = 0.2031). However, mean sleep efficiency was significantly lower than baseline on days 5--7 (p.F) = 0.0041). More pilots were on duty between 20:00 and 24:00 h on days 57 (mean = 21%) than on days 24 (mean = 14%). Sleep propensity distribution phase markers and chi-square periodogram analyses suggest that adaptation to local time was complete by day 4 in Asia. On pre-flight PVT tests in Asia, the slowest 10% of responses improved for flights departing 14:00--19:59 h (p.F) = 0.0484). At TOD, the slowest 10% of responses improved across days for flights arriving 14:00--19:59 h (p.F) = 0.0349) and 20:00--01:59 h (p.F) = 0.0379). Sleepiness and fatigue ratings pre-flight and at TOD did not change across days in Asia. TST on post-trip day 1 was longer than baseline (estimated mean extension = 1.68 h; adjusted p(t) < 0.0001). On all post-trip days, sleep efficiency was comparable to baseline. Sleep propensity distribution phase markers and chi-square periodogram analyses suggest complete readaptation in 12 d. Two opposing influences appeared to affect sleep and PVT performance across days in Asia: progressive circadian adaptation to local time and increasing duty during local night, which displaced sleep from the optimal physiological time. Cumulative sleep restriction across the return flight may explain the large rebound in TST on day 1 post-trip. Thereafter TST, sleep efficiency, and sleep timing suggest that readaptation was complete. Rapid post-trip readaptation may be facilitated by pilots having unconstrained nocturnal sleep opportunities, coupled with stronger patterns of family and social cues than in Asia.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
23834703
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"