JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Role of grain size in the regulation of osteoblast response to Ti-25Nb-3Mo-3Zr-2Sn alloy.

Nano- and ultrafine-grained β-Ti layers were fabricated on Ti-25Nb-3Mo-3Zr-2Sn alloy by surface mechanical attrition treatment (SMAT). After being ground and polished, the two layers exhibited the same chemical composition, similar surface roughness and topography features to the coarse-grained surface, however, higher hardness values were exhibited on the ultrafine- and nano-grained surfaces, especially on nano-grained surface compared to coarse-grained surface. Hydrophilicity test, evaluated by measuring water contact angles, showed that the nano-grained surface was much more hydrophilic than the ultrafine- and coarse-grained surfaces. The adsorption of total protein and anchoring proteins such as vitronectin and fibronectin on the different surfaces from DMEM medium containing 10% fetal bovine serum was also examined. Employing hFOB1.19 cells, the behaviors of osteoblasts on the three kinds of grain-scaled surfaces, including adhesion, proliferation and differentiation, were evaluated by examining the morphology, the number of adherent cells, actin cytoskeleton reorganization, vinculin signals, expressions of steogenesis-related genes, alkaline phosphatase activity, contents of intracellular specific proteins and collagen type I, extracellular collagen secretion as well as matrix mineralization. The significant enhancements of osteoblast adhesion, proliferation, maturation and mineralization are exhibited on the nano-grained surface, while little improvements are found on the ultrafine-grained surface compared to the conventional coarse-grained surface. The differences in the cellular response to the three kinds of grain-scaled surfaces are related to grain size and degree of hydrophilicity. The improved cell functions together with mechanical properties make SMAT-processed nanograined β-Ti a promising biomaterial for surgical implants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app