JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Preparation and properties of porous Ti-10Mo alloy by selective laser sintering.

In this study, porous Ti-10Mo alloy was prepared from a mixture of titanium, molybdenum and epoxy resin powders by selective laser sintering preforming, debinding and sintering at 1200 °C under a pure argon atmosphere. The influence of sintering process on the porous, microstructural and mechanical properties of the porous alloy was discussed. The results indicate that the pore characteristic parameters and mechanical properties mainly depend on the holding time at 1200 °C, except that the maximum strain keeps at about 45%. The matrix microstructure is dominated by α phase with a small quantity of β phase at room temperature. As the holding time lengthens from 2 to 6h, the average pore size and the porosity decrease from 180 to 50 μm and from 70 to 40%, respectively. Meanwhile, the Young's modulus and the compressive yield strength increase in the ranges of 10-20 GPa and 180-260 MPa, respectively. Both the porous structure and the mechanical properties of the porous Ti-10Mo alloy can be adjusted to match with those of natural bone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app