JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Numerical simulation of airflow patterns in nose models with differently localized septal perforations.

Laryngoscope 2013 September
OBJECTIVES/HYPOTHESIS: The most typical complaints of patients with nasal septal perforation (SP) are nasal obstruction, crusting, and recurrent epistaxis depending on the size and site of the SP mainly due to disturbed airflow patterns. The objective of the study was to determine the influence of differently localized SPs on intranasal airflow patterns during inspiration by means of numerical simulation.

STUDY DESIGN: An experimental setup using three dimensional computer models of a human nose was created. Four different models with three differently localized septal perforation allowed an examination of intranasal airflow changes.

METHODS: Four high-resolution, realistic, bilateral computer models of the human nose with three differently localized SPs were reconstructed based on computed tomography. A numerical simulation was performed. The intranasal airflow patterns (path lines, velocity, turbulent kinetic energy) during inspiration were displayed, analyzed, and compared.

RESULTS: SPs cause a highly disturbed airflow in the area of the SP and behind. A spacious vortex within the perforation, including various localized vortices, was detected. The airflow in the nose was disturbed to varying degrees depending on the location of the perforation. SPs within the anterior caudal septum in area II led to increased negative turbulences and crossflow.

CONCLUSIONS: The numerical simulations demonstrate significantly disturbed intranasal airflow patterns due to SPs. This fact may contribute to crusting and nosebleed due to dehydration of the nasal mucosa. The location and size of the SP are crucial for the impact on disturbed airflow pattern and therefore the patients' complaints. Anterior caudal SPs seem to be the worst. Surgical closure of SPs or simply changes in the site and size of the SP if a complete closure is surgically impossible makes sense.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app