Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Viability inhibition effect of gambogic acid combined with cisplatin on osteosarcoma cells via mitochondria-independent apoptotic pathway.

We previously demonstrated that gambogic acid (GA) is a promising chemotherapeutic compound for human osteosarcoma treatment. The aim of this study was to detect whether the combination of lower-dose GA (0.3 mg/L) and cisplatin (CDDP) (1 mg/L) could perform a synergistic effect on inhibiting tumor in four osteosarcoma cell lines. Our results showed that the combination between GA at lower dose and CDDP significantly exerts a synergistic effect on inhibiting the cellular viability in MG63, HOS, and U2OS cells. In contrast, an antagonistic character was detected in SAOS2 cells exposed to the combined use of lower-dose GA (0.3 mg/L) and CDDP (1 mg/L). Then, analysis of cell cycle showed the combination of both drugs significantly induced the G2/M phase arrest, without any difference relative to GA treatment alone, in MG63 cells. Flow-cytometric analysis of cell apoptosis displayed that the apoptotic rate in the combination group is higher than that in GA treatment alone in MG63, HOS, and U2OS cells. The combined use of both drugs had no effect on mitochondrial membrane potential, but promoted the apoptosis-inducing function through triggering of CDDP in the three cell lines. By measurement of mitochondrial membrane potential, the activity of caspase-3 and the expressions of caspase-8 and caspase-9, it was showed that the apoptosis-promoting effect of the combined use of both drugs could be dependent on the death receptor apoptosis pathway, not dependent on the mitochondria apoptosis mechanism. This research, for the first time, demonstrates that GA could increase the chemotherapeutic effect of CDDP in human osteosarcoma treatment through inducing the cell cycle arrest and promoting cell apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app