Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Thioredoxin-1 mediates hypoxia-induced pulmonary artery smooth muscle cell proliferation.

Pathological pulmonary artery smooth muscle cell (PASMC) proliferation contributes to pulmonary vascular remodeling in pulmonary hypertensive diseases associated with hypoxia. Both the hypoxia-inducible factor (HIF) and phosphatidylinositol 3-kinase (PI3K)/serine/threonine kinase (Akt) pathways have been implicated in hypoxia-induced PASMC proliferation. Thioredoxin-1 (Trx1) is a ubiquitously expressed protein that is involved in redox-dependent signaling via HIF and PI3K-Akt in cancer. The role of Trx1 in PASMC proliferation has not been elucidated. The present studies tested the hypothesis that Trx1 regulates hypoxia-induced PASMC proliferation via HIF and/or PI3K- and Akt-dependent mechanisms. Following exposure to chronic hypoxia, our data indicate that Trx1 activity is increased in adult murine lungs. Furthermore, hypoxia-induced increases in cellular proliferation are correlated with increased Trx1 expression, HIF activation, and Akt activation in cultured human PASMC. Both small-interfering RNA-mediated knockdown and pharmacological Trx1 inhibition attenuated hypoxia-induced PASMC proliferation, HIF activation, and Akt activation. While Trx1 knockdown suppressed hypoxia-induced PI3K-Akt activation in PASMC, PI3K-Akt inhibition prevented hypoxia-induced proliferation but had no effect on hypoxia-induced increases in Trx1 or HIF activation. Thus, our findings indicate that Trx1 contributes to hypoxia-induced PASMC proliferation by modulating HIF activation and subsequent PI3K-Akt activation. These novel data suggest that Trx1 might represent a novel therapeutic target to prevent hypoxic PASMC proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app