Add like
Add dislike
Add to saved papers

Cu²⁺ sequestration by amine-functionalized silica nanotubes.

A novel method for Cu(2+) sequestration in Cu(2+) aqueous solution has been demonstrated using amine-functionalized double-walled silica nanotubes (DWSNTs). Herein, the precipitation method and the adsorption method are combined to remove Cu(2+) in the Cu(2+) aqueous solution. Primary (1°), secondary (2°), tertiary (3°), di-, tri-amines are immobilized on the surface of DWSNT as the adsorption site. The results show that the Cu(2+) adsorption amount on the amine-functionalized DWSNTs is in the following order: tri-amine>di-amine>1° amine>2° amine>3° amine. The complexed Cu(2+)s with the amine-functionalized DWSNTs become Cu(OH)2 crystals due to the reaction with OH(-)s dissociated from water. Thus, the amine-functionalized DWSNTs show the superior sequestration capacity of Cu(2+) in the Cu(2+) aqueous solution owing to the Cu(OH)2 crystals growth on them. FT-IR, FEG-SEM, HR-TEM, and XRD studies demonstrate the mechanism of the Cu(2+) adsorption and the Cu(OH)2 crystals growth. The crystallization-technique of the heavy metal ion on the amine-functionalized DWSNTs is also expected to have potential applications such as the facile synthesis of nano- and microparticles, and the metal catalyst supporter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app