The effect of ketorolac tromethamine, methylprednisolone, and platelet-rich plasma on human chondrocyte and tenocyte viability

Knut Beitzel, Mary Beth McCarthy, Mark P Cote, John Apostolakos, Ryan P Russell, James Bradley, Neal S ElAttrache, Antony A Romeo, Robert A Arciero, Augustus D Mazzocca
Arthroscopy: the Journal of Arthroscopic & related Surgery 2013, 29 (7): 1164-74

PURPOSE: The purpose of this study was to evaluate the effect on cell viability of the isolated and combined use of allogeneic platelet-rich plasma (PRP) and ketorolac tromethamine on human chondrocytes and tenocytes in a highly controlled in vitro environment.

METHODS: PRP was produced from 8 subjects. Human chondrocytes (Lonza, Hopkinton, MA) and tenocytes isolated from samples of the long head of the biceps tendons were treated in culture with PRP, ketorolac tromethamine, and methylprednisolone, both alone and in combination. Control samples were treated in media containing 2% or 10% fetal bovine serum (FBS). Cells were exposed for 1 hour. Luminescence assays were obtained to examine cell viability after 24 hours and long-term effects on cell viability after 120 hours. Radioactive thymidine assay was used to measure proliferation after 120 hours.

RESULTS: For chondrocytes, cell viability (120 hours) increased significantly with the treatment of PRP alone (43,949 ± 28,104 cells; P < .001) and with the combination of ketorolac tromethamine and PRP (43,276 ± 31,208; P < .001), compared with the 2% FBS group (7,397 ± 470). Cell viability decreased significantly after exposure to methylprednisolone (1,323 ± 776; P < .001) and its combination with PRP (4,381 ± 5,116; p < .001). For tenocytes, cell viability (120 hours) was significantly higher with the treatment of PRP (61,287 ± 23,273; P < .001) and the combined treatment of ketorolac tromethamine and PRP (52,025 ± 17,307; P < .001), compared with the 2% FBS group (23,042 ± 2,973). Cell viability decreased significantly after exposure to methylprednisolone (3,934 ± 1,791; P = .001) and its combination with PRP (5,201 ± 2,834; P = .003), compared with 2% FBS.

CONCLUSIONS: Tendon and cartilage cells showed increased cell viability after an exposure to allogeneic PRP and ketorolac tromethamine. Exposure to methylprednisolone alone decreased cell viability, and addition of PRP could partially reverse this negative effect.

CLINICAL RELEVANCE: Intra-articular injections of pain-modifying or anti-inflammatory drugs are routinely given in orthopaedic practice. Among the many agents available for intra-articular injection, corticosteroids and local anesthetics are the most common in clinical practice. Potential detrimental side effects of intra-articular injections of corticosteroids and local anesthetics have prompted investigation into alternative treatment options such as combinations of PRP and ketorolac tromethamine. In vitro evaluation of their effect on cell viability might build a basis for further translational research and clinical application.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"