Journal Article
Review
Add like
Add dislike
Add to saved papers

Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis.

Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme that catalyzes the hydrolysis of poly(ADP-ribose) (PAR), an essential biopolymer that is synthesized by poly(ADP-ribose) polymerases (PARPs) in the cell. By regulating the hydrolytic arm of poly(ADP-ribosyl)ation, PARG participates in a number of biological processes, including the repair of DNA damage, chromatin dynamics, transcriptional regulation, and cell death. Collectively, the research investigating the roles of PARG in the cell has identified the importance of PARG and its value as a therapeutic target. However, the biological role of PARG remains less understood than the role of PAR synthesis by the PARPs. Further complicating the study of PARG is the existence of multiple PARG isoforms in the cell, the lack of optimal PARG inhibitors, and the lack of viable PARG-null animals. This review will present our current knowledge of PARG, with a focus on its roles in DNA-damage repair and cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app