JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Three dissimilar high fat diets differentially regulate lipid and glucose metabolism in obesity-resistant Slc:Wistar/ST rats.

Lipids 2013 August
Epidemiologic and ecologic studies suggest that dietary fat plays an important role in the development of obesity. Certain Wistar rat strains do not become obese when fed high-fat diets unlike others. In a preliminary study, we confirmed that Slc:Wistar/ST rats did not become obese when fed high-fat diets. The mechanisms governing the response of hepatic lipid-metabolizing enzymes to large quantities of dietary lipids consumed by obesity-resistant animals are unknown. The aim of the present study is to examine how obesity-resistant animals metabolize various types of high-fat diets and why they do not become obese. For this purpose, male Slc:Wistar/ST rats were fed a control low-fat diet (LS) or a high-fat diet containing fish oil (HF), soybean oil (HS), or lard (HL) for 4 weeks. We observed their phenotypes and determined lipid profiles in plasma and liver as well as mRNA expression levels in liver of genes related to lipid and glucose metabolism using DNA microarray and quantitative reverse transcriptase polymerase chain analyses. The body weights of all dietary groups were similar due to isocaloric intakes, whereas the weight of white adipose tissues in the LS group was significantly lower. The HF diet lowered plasma lipid levels by accelerated lipolysis in the peroxisomes and suppressed levels of very-low-density lipoprotein (VLDL) secretion. The HS diet promoted hepatic lipid accumulation by suppressed lipolysis in the peroxisomes and normal levels of VLDL secretion. The lipid profiles of rats fed the LS or HL diet were similar. The HL diet accelerated lipid and glucose metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app