JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Oxidative stress in atherosclerosis: the role of microRNAs in arterial remodeling.

Atherosclerosis is the underlying condition in most cardiovascular diseases. Among the highly specific cellular and molecular responses, endothelial dysfunction plays a key role in disease initiation and progression. These events coincide with the occurrence of oxidative stress. Increased reactive oxygen species production and oxidization of low-density lipoprotein are detected throughout atherosclerosis progression. MicroRNAs (miRNAs) have emerged as important regulators of gene expression that posttranscriptionally modify cellular responses and function. Accumulating studies indicate an integrated miRNA network in the molecular mechanisms that control cellular homeostasis, vascular inflammation, and metabolism. Experimental models of atherosclerosis highlight a direct link between altered miRNA expression profiles and the pathophysiology of the disease and identify putative miRNA candidates for the development of novel therapeutic strategies. In this review, we provide an overview of the role of miRNA regulatory networks in oxidative stress in atherosclerosis and arterial remodeling and discuss their potential therapeutic implications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app