Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

FACS analysis of neuronal-glial interactions in the nucleus accumbens following morphine administration.

Psychopharmacology 2013 December
RATIONALE: Glia, including astrocytes and microglia, can profoundly modulate neuronal function and behavior; however, very little is known about the signaling molecules that govern neuronal-glial communication and in turn affect behavior. Morphine treatment activates microglia and astrocytes in the nucleus accumbens (NAcc) to induce the synthesis of cytokines and chemokines, and this has important implications for addictive behavior. Blocking morphine-induced glial activation using the nonspecific glial inhibitor, ibudilast, has no effect on the initial rewarding properties of morphine, but completely prevents the relapse of drug-seeking behavior months later.

OBJECTIVES: We sought to determine the cellular source of these cytokines and chemokines in the NAcc in response to morphine, and the cell-type-specific expression pattern of their receptors to determine whether neurons have the capacity to respond to these immune signals directly.

METHODS: We used fluorescence-activated cell sorting of neurons (Thy1+), astrocytes (GLT1+), and microglia (CD11b+) from the NAcc for the analysis of cell type specific gene expression following morphine or saline treatment.

RESULTS: The results indicate that microglia and neurons each produce a subset of chemokines in response to morphine and that neurons have the capacity to respond directly to a select group of these chemokines via their receptors. In addition, we provide evidence that microglia are capable of responding directly to dopamine release in the NAcc.

CONCLUSIONS: Future studies will examine the mechanism(s) by which neurons respond to these immune signals produced by microglia in an effort to understand their effect on addictive behaviors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app