JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response.

Nuclear factor-κB (NF-κB) is a transcription factor that plays a crucial role in coordinating innate and adaptive immunity, inflammation, and apoptotic cell death. NF-κB is activated by various inflammatory stimuli including peptide factors and infectious microbes. It is also known as a redox-sensitive transcription factor activated by reactive oxygen species (ROS). Over the past decades, various investigators focused on the role of ROS in the activation of NF-κB by cytokines and lipopolysaccharides. However, recent studies also suggested that ROS have the potential to repress NF-κB activity. Currently, it is not well addressed how ROS regulate activity of NF-κB in a bidirectional fashion. In this paper, we summarize evidence for positive and negative regulation of NF-κB by ROS, possible redox-sensitive targets for NF-κB signaling, and mechanisms underlying biphasic and bidirectional influences of ROS on NF-κB, especially focusing on a role of ROS-mediated induction of endoplasmic reticulum stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app