JOURNAL ARTICLE

Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots

Benmei Cao, Chao Yuan, Bianhua Liu, Changlong Jiang, Guijian Guan, Ming-Yong Han
Analytica Chimica Acta 2013 July 5, 786: 146-52
23790304
A novel nanohybrid ratiometric fluorescence probe comprised of carbon dots (C-dots) and hydrophilic CdSe@ZnS quantum dots (QDs) has been developed by simply mixing the blue-emission C-dots with red-emission carboxylmethyldithiocarbamate modified CdSe@ZnS QDs (GDTC-QDs). The nanohybrid ratiometric fluorescence probe exhibits dual emissions at 436 nm and 629 nm under a single excitation wavelength. Due to the strong chelating ability of GDTC on the surface of QDs to mercuric ion (Hg(2+)), the fluorescence of the GDTC-QDs in the nanohybrid system could be selectively quenched in the presence of Hg(2+) while the fluorescence of the C-dots remained constant, resulting in an obviously distinguishable fluorescence color evolution (from red to blue) of the nanohybrid system. The detection limit of this method was found to be as low as 0.1 μM. Furthermore, the recovery result for Hg(2+) in real samples including tap water and lake water by this method was satisfying, suggesting its potential application for Hg(2+) sensing.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23790304
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"