Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Adsorption of neutral red and malachite green onto grapefruit peel in single and binary systems.

This study characterized the properties of NaOH-modified grapefruit peel (MGP) and investigated its adsorption properties, specifically the adsorption of the synthetic dyes neutral red (NR) and malachite green (MG) onto MGP, in single and binary systems by means of batch techniques. The adsorption equilibrium data of NR onto MGP fit well with both the Langmuir and Koble-Corrigan models, while the Koble-Corrigan and Dubinin-Radushkevich models seemed to agree better with MG adsorption. The maximum equilibrium quantities of NR and MG from the Langmuir model were 640.3 and 314.9 mg/g at 298 K, respectively. The Elovich model was a better fit with the kinetic process, which suggested that ion exchange was one of the main mechanisms at work. The thermodynamic parameters of adsorption systems indicated spontaneous and endothermic processes. In the binary system experiments, NR and MG exhibited competitive adsorption. The quantity of MG adsorbed was more strongly influenced by NR, due to the higher affinity of MGP for the latter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app