Add like
Add dislike
Add to saved papers

Ion-pair spectrophotometric estimation of gemifloxacin.

INTRODUCTION: The main objective was to develop and validate a simple, accurate, precise, and sensitive ion-pair spectrophotometric extraction method for the assay of gemifloxacin mesylate (GFX) in pure, tablets and spiked human urine.

MATERIALS AND METHODS: The method is based upon the reaction of gemifloxacin with methyl orange, forming a yellow-colored complex in acidic medium, which is extracted in chloroform and analyzed. The extracted complexes showed absorbance maxima (λmax) found to be at 427 nm.

RESULTS: Beer's law was obeyed for a wide concentration range, i.e., 10-80 μg/ mL as the extracted species seemed well defined and stable. The surface or an interphase adsorption phenomenon was not a problem. Optimization of the reaction was carried out with factors such as buffer strength, stability of complex, and molar ratio of drug: Dye and extraction time. The proposed method was validated as per the ICH guidelines. The recovery studies confirmed the accuracy and precision of the method.

CONCLUSION: The above-mentioned method was a rapid tool for routine analysis of GFX in the bulk and pharmaceutical dosage forms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app