JOURNAL ARTICLE

Energy transfer at the single-molecule level: synthesis of a donor-acceptor dyad from perylene and terrylene diimides

Ha Na Kim, Larissa Puhl, Fabian Nolde, Chen Li, Long Chen, Thomas Basché, Klaus Müllen
Chemistry: a European Journal 2013 July 8, 19 (28): 9160-6
23780819
In 2004, we reported single-pair fluorescence resonance energy transfer (spFRET), based on a perylene diimide (PDI) and terrylene diimide (TDI) dyad (1) that was bridged by a rigid substituted para-terphenyl spacer. Since then, several further single-molecule-level investigations on this specific compound have been performed. Herein, we focus on the synthesis of this dyad and the different approaches that can be employed. An optimized reaction pathway was chosen, considering the solubilities, reactivities, and accessibilities of the building blocks for each individual reaction whilst still using established synthetic techniques, including imidization, Suzuki coupling, and cyclization reactions. The key differentiating consideration in this approach to the synthesis of dyad 1 is the introduction of functional groups in a nonsymmetrical manner onto either the perylene diimide or the terrylene diimide by using imidization reactions. Combined with well-defined purification conditions, this modified approach allows dyad 1 to be obtained in reasonable quantities in good yield.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23780819
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"