Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images

Akara Sopharak, Bunyarit Uyyanonvara, Sarah Barman
Computerized Medical Imaging and Graphics: the Official Journal of the Computerized Medical Imaging Society 2013, 37 (5): 394-402
Microaneurysms detection is an important task in computer aided diagnosis of diabetic retinopathy. Microaneurysms are the first clinical sign of diabetic retinopathy, a major cause of vision loss in diabetic patients. Early microaneurysm detection can help reduce the incidence of blindness. Automatic detection of microaneurysms is still an open problem due to their tiny sizes, low contrast and also similarity with blood vessels. It is particularly very difficult to detect fine microaneurysms, especially from non-dilated pupils and that is the goal of this paper. Simple yet effective methods are used. They are coarse segmentation using mathematic morphology and fine segmentation using naive Bayes classifier. A total of 18 microaneurysms features are proposed in this paper and they are extracted for naive Bayes classifier. The detected microaneurysms are validated by comparing at pixel level with ophthalmologists' hand-drawn ground-truth. The sensitivity, specificity, precision and accuracy are 85.68, 99.99, 83.34 and 99.99%, respectively.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"