JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Bone marrow-derived mesenchymal stem cells favor the immunosuppressive T cells skewing in a Helicobacter pylori model of gastric cancer.

Bone marrow-derived mesenchymal stem cells (BM-MSCs) play an important role in Helicobacter pylori-induced gastric carcinogenesis. While the mechanism is not well understood, BM-MSCs have been shown to contribute to the immunosuppressive response found in a number of diseases. Here, BM-MSCs were transplanted into the stomach of mice with a 44-week mouse-adapted H. pylori infection. At day 28 post-transplantation, BM-MSCs migrated from the subserosal to the mucosal layer of the stomach. The grafted BM-MSCs significantly stimulated systemic and local interleukin-10 (IL-10)-secreting T cell and regulatory T cell (Treg) functions. This observation was correlated with an increased percentage of CD4⁺IL-10⁺ cells and CD4⁺CD25⁺FoxP3⁺ cells in splenic mononuclear cells compared with H. pylori-infected mice not receiving BM-MSCs. Moreover, inhibitory cytokines IL-10 and transforming growth factor-β1 increased in the gastric tissue, while there was a decrease in inflammatory interferon-γ (IFN-γ). BM-MSC-transplanted mice also developed elevated IL-10/IFN-γ secreting and Treg/Th17 ratios. A coculture system in the presence or absence of BM-MSCs was also established to evaluate the immune responses in vitro. An increase in IL-10-secreting T cells and Tregs, associated with increased expression of Gata-3 and FoxP3, generation of IL-10 in the supernatant, and proliferation of gastric epithelial cells (GECs) was observed. These findings demonstrate that transplantation of BM-MSCs into a chronic H. pylori-infected mouse model results in the generation of an immunosuppressive environment. The local and systemic immunosuppression mediated by BM-MSCs likely contributed to an environment that is compatible with the development of H. pylori-induced gastric cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app