Add like
Add dislike
Add to saved papers

Quantifying Membrane Curvature Generation of Drosophila Amphiphysin N-BAR Domains.

Biological membrane functions are coupled to membrane curvature, the regulation of which often involves membrane-associated proteins. The membrane-binding N-terminal amphipathic helix-containing BIN/Amphiphysin/Rvs (N-BAR) domain of amphiphysin is implicated in curvature generation and maintenance. Improving the mechanistic understanding of membrane curvature regulation by N-BAR domains requires quantitative experimental characterization. We have measured tube pulling force modulation by the N-BAR domain of Drosophila amphiphysin (DA-N-BAR) bound to tubular membranes pulled from micropipette-aspirated giant vesicles. We observed that fluorescently-labeled DA-N-BAR showed significantly higher protein density on tubules compared to the connected low-curvature vesicle membrane. Furthermore, we found the equilibrium tube pulling force to be systematically dependent on the aqueous solution concentration of DA-N-BAR, thereby providing the first quantitative assessment of spontaneous curvature generation. At sufficiently high protein concentrations, pulled tubes required no external force to maintain mechanical equilibrium, in agreement with the qualitative spontaneous tubulation previously reported for amphiphysin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app