JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In situ synthesis of Ru/RGO nanocomposites as a highly efficient catalyst for selective hydrogenation of halonitroaromatics.

Nanoscale 2013 August 8
A reduced graphene oxide (RGO) supported-ruthenium (Ru) catalyst was prepared through a facile hydrothermal process with reduction of Ru(3+) and GO at the same time. Small ruthenium nanoparticles were well dispersed on the surface of the RGO sheets confirmed by a set of characterizations such as SEM and TEM. XPS analysis indicated that Ru nanoparticles were in an electron-deficient state due to the electron transfer between the nanoparticles and the RGO sheets. The as-prepared catalyst was applied for the selective hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN), exhibiting a turnover frequency (TOF) of 1800 h(-1) and a selectivity of 99.6% at complete conversion of p-CNB. The Ru/RGO catalyst displayed excellent stability and was extremely active for the hydrogenation of a series of nitroarenes, which can be ascribed to the fine dispersity of the Ru nanoparticles on the RGO sheets and their electron-deficient state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app