Clinical Trial, Phase I
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A phase I, open-label, mass balance study of [(14)C] dacomitinib (PF-00299804) in healthy male volunteers.

PURPOSE: This study aimed to characterize the primary routes of elimination of the pan-HER tyrosine kinase inhibitor, dacomitinib (PF-00299804), to evaluate the pharmacokinetics of total radioactivity and of dacomitinib and to identify the metabolites of dacomitinib in plasma, urine, and feces in the healthy volunteers.

METHODS: Six male healthy volunteers (mean age 31.5 years) received a single 45-mg oral dose containing ~100 μCi [(14)C] dacomitinib. Whole blood, urine, and fecal samples were collected throughout the study and analyzed for total radioactivity by liquid scintillation counting. Safety evaluations included vital signs, 12-lead ECGs, safety laboratory tests, and monitoring of adverse events.

RESULTS: 78.8 % of the radiolabeled material was excreted in feces, and 3.2 % was recovered in urine. Peak concentrations of dacomitinib in plasma occurred 12 h (median) after oral dosing. Mean terminal plasma half-life was 55 and 182 h for dacomitinib and total plasma radioactivity, respectively. Geometric mean C max was approximately 2-fold higher, and total exposure (AUCinf) was almost 6-fold higher for total radioactivity than for dacomitinib in plasma. O-desmethyl dacomitinib (PF-05199265) was the major circulating metabolite. T max of this metabolite occurred 6 h after oral dosing with dacomitinib. Plasma exposure for the metabolite was one-third that of the parent compound. There were no serious/severe adverse events or deaths during the study. Dacomitinib was well tolerated.

CONCLUSIONS: In humans, [(14)C] dacomitinib underwent oxidative and conjugative metabolism. Most of the administered dose was eliminated via the fecal route, and the major circulating metabolite was PF-05199265.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app