JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of microRNAs differentially expressed between lung squamous cell carcinoma and lung adenocarcinoma.

Recent advances in the treatment of non-small cell lung cancer (NSCLC) with new agents require accurate histological subtyping at diagnosis to avoid the higher risk of an adverse response and to obtain the maximum therapeutic response. However, interobserver variability, tumor heterogeneity and the degree of differentiation may affect the decision concerning a pathological diagnosis of NSCLC. Therefore, the aim of this study was to identify specific microRNAs (miRNAs) as standardized biomarkers with high sensitivity and specificity in order to distinguish between squamous cell carcinoma (SCC) and adenocarcinoma (AC). Quantitative polymerase chain reaction (qPCR)‑based miRNA array analysis was performed to identify microRNAs differentially expressed between SCC and AC using 86 resected NSCLC samples in addition to adjacent normal tissues. The results were confirmed by independent qRT-PCR assays with the same test samples and 88 additional validation samples, and from this we evaluated the usefulness of the identified miRNAs as biomarkers to distinguish between SCC and AC. Three miRNAs (hsa-miR-196b, hsa-miR-205 and hsa-miR-375) were identified. Discriminant analysis combining the three miRNAs appeared to distinguish SCC from AC accurately in the test and validation samples, demonstrating a sensitivity and specificity of 76 and 80%, and 85 and 83%, respectively. hsa-miR-196b, hsa-miR-205 and hsa-miR-375 were identified as biomarkers capable of distinguishing between lung SCC and lung AC. These newly identified miRNAs may prove to be highly valuable molecular markers for the classification of NSCLC histological subtypes and may contribute to the pathogenesis of each subtype of NSCLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app