JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

KDM5B histone demethylase controls epithelial-mesenchymal transition of cancer cells by regulating the expression of the microRNA-200 family.

Cell Cycle 2013 July 2
Histone methylation is implicated in various biological and pathological processes including cancer development. In this study, we discovered that ectopic expression of KDM5B, a histone H3 lysine 4 (H3K4) demethylase, promoted epithelial-mesenchymal transition (EMT) of cancer cells. KDM5B increased the expression of transcription factors, ZEB1 and ZEB2, followed by downregulation of E-cadherin and upregulation of mesenchymal marker genes. The expression of the microRNA-200 (miR-200) family, which specifically targets ZEB1 and ZEB2, was reduced in the cells with KDM5B overexpression. We found that KDM5B repressed the expression of the miR-200 family by changing histone H3 methylation status of their regulatory regions. The introduction of miR-200 precursor in the cells inhibited EMT induction by KDM5B, suggesting that miR-200 family was a critical downstream mediator of KDM5B-promoted EMT. Furthermore, knockdown of KDM5B was shown to affect the expression of EMT-related genes, indicating the involvement of endogenous KDM5B. Our study demonstrated a novel role of KDM5B histone lysine demethylase in EMT, which may contribute to malignant progression of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app