Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Negative expectations facilitate mechanical hyperalgesia after high-frequency electrical stimulation of human skin.

BACKGROUND: High-frequency electrical stimulation (HFS) of human skin induces not only an increased pain sensitivity in the conditioning area but also an increased pain sensitivity to mechanical punctate stimuli in the non-conditioned surrounding skin area. The aim of the present study was to investigate whether this heterotopically increased mechanical pain sensitivity can be facilitated through the induction of negative expectations.

METHODS: In two independent conditions [a nocebo (n = 15) and control condition (n = 15)], we applied mechanical pain stimuli before, directly after, 10 min and 20 min after HFS in the skin area surrounding the conditioning area, and measured the reported pain intensity [visual analogue scale (VAS)]. All subjects (of both conditions) received a written instruction about the HFS protocol, but only the instruction in the nocebo condition was extended by the following text (in Dutch): 'After the HFS, your skin will become more sensitive to the pinprick stimulation'.

RESULTS: Our results clearly show that induced expectations of increased mechanical pain sensitivity after HFS facilitates the reported pain intensity after HFS more than when no information is given.

CONCLUSIONS: This study shows for the first time that brain mechanisms, via the induction of negative expectations, can facilitate heterotopic mechanical hyperalgesia after HFS of human skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app