Add like
Add dislike
Add to saved papers

Addition of vardenafil into storage solution protects the endothelium in a hypoxia-reoxygenation model.

OBJECTIVE: Based upon the well known protective effect of intracellular cyclic guanosine monophosphate (cGMP) accumulation, we tested the hypothesis that storage solution enriched with optimal concentration of the phosphodiestherase-5 inhibitor vardenafil could provide better protection of vascular grafts against reperfusion injury after long-term cold ischaemic storage.

METHODS: Isolated thoracic aorta obtained from rats underwent 24-h cold ischaemic preservation in physiological saline or vardenafil (10(-11) M)-supplemented saline solution. Reperfusion injury was simulated by hypochlorite (200 μM) exposure for 30 minutes. Endothelium-dependent vasorelaxation was assessed, and histopathological and molecular-biological examination of the aortic tissue were performed.

RESULTS: Compared with the control group, the saline group showed significantly attenuated endothelium-dependent maximal relaxation (Rmax) to acetylcholine after hypoxia-reoxygenation, which was significantly improved by vardenafil supplementation (Rmax control: 98 ± 1%; saline: 48 ± 6%; vardenafil: 75 ± 4%; p < .05). Vardenafil treatment significantly reduced DNA strand breaks (control: 10.6 ± 6.2%; saline: 72.5 ± 4.0%; vardenafil: 14.2 ± 5.2%; p < .05) and increased cGMP score in the aortic wall (control: 8.2 ± 0.6; saline: 4.5 ± 0.3; vardenafil: 6.7 ± 0.6; p < .05).

CONCLUSIONS: Our results support the view that impairment of intracellular cGMP signalling plays a role in the pathogenesis of the endothelial dysfunction induced by cold storage warm reperfusion, which can be effectively reversed by pharmacological phosphodiesterase-5 inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app