Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Novel monoclonal antibodies GMab-r1 and LMab-1 specifically recognize IDH1-R132G and IDH1-R132L mutations.

Isocitrate dehydrogenase 1 (IDH1) catalyzes the oxidative carboxylation of isocitrate to α-ketoglutarate in cytosol. IDH1 mutations, which are specific to a single codon in the conserved and functionally important Arginine 132 (R132), result in the ability of the enzyme to catalyze the reduced NADP-dependent reduction of α-ketoglutarate to onco-metabolite R(-)-2-hydroxyglutarate (2-HG). IDH1 mutations, which are early and frequent genetic alterations that occur in gliomas, cartilaginous tumors, and leukemias. We previously established two monoclonal antibodies (MAbs) that are specific for IDH1 mutations: clone HMab-1 against IDH1-R132H and clone SMab-1 against IDH1-R132S. However, specific MAbs against IDH1-R132G or IDH1-R132L have not been reported. To establish IDH1-R132G-specific or IDH1-R132L-specific MAbs, we immunized rats with each mutation-containing IDH1 peptides, and IDH1-R132G-specific or IDH1-R132L-specific MAbs were screened in ELISA. Established MAb GMab-r1 reacted with the IDH1-R132G peptide, but not with IDH1-wild type (WT) in ELISA. In contrast, LMab-1 reacted with the IDH1-R132L peptide, but not with IDH1-WT. Western blot analysis also showed that GMab-r1 and LMab-1 reacted with the IDH1-R132G and IDH1-R132L recombinant proteins, respectively, but not with IDH1-WT or other IDH1 mutants, indicating that GMab-r1 and LMab-1 are IDH1-mutation-specific. Furthermore, GMab-r1 and LMab-1 specifically stained the IDH1-R132G- and IDH1-R132L-expressing cells in immunocytochemistry, respectively. This is the first report to establish anti-IDH1-R132G-specific or IDH1-R132L-specific MAbs, which could be useful in the diagnosis of mutation-bearing tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app