Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Detection of nonylphenol and persistent organic pollutants in fish from the North Pacific Central Gyre.

Despite scientific and public concern, research on food web contamination from chemicals in plastic is limited, and distinguishing plastic sources from prey remains a challenge. We analyzed juvenile yellowtail (Seriola lalandi) from the North Pacific Central Gyre for plastic ingestion and tissue concentrations of persistent organic pollutants and nonionic surfactants to investigate potential contamination from plastic exposure. Ingestion of synthetic debris occurred in ~10% of the sample population. PCBs and DDTs were 352±240 (mean±SD) and 1425±1118 ng/g lw, respectively. PBDEs were 9.08±10.6 ng/g lw, with BDEs-47, 99, and 209 representing 90% of PBDEs. Nonylphenol (NP) was detected in one-third of the yellowtail with a mean of 52.8±88.5 ng/g ww overall and 167±72.3 ng/g ww excluding non-detects. Because environmental NP is strongly associated with wastewater treatment effluents, long-range transport is unlikely, and NP was previously measured in gyre plastic, we concluded that plastic-mediated exposure best explained our findings of NP in yellowtail.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app