JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A prediction model for monitoring ribbed roller compacted ribbons.

The application of near infrared (NIR) spectroscopy for real-time monitoring of the critical quality attributes of ribbed roller compacted ribbons was studied. Three NIR probes (QR 200, QR 400, and QR 600) of lens diameters, 200, 400, and 600 μm, respectively were used at various fixed distances from the ribbon surface to determine the calibration model with optimum predictive ability for monitoring the roller compaction process. The ribbon attributes studied were micronized chlorpheniramine maleate concentration, roll force, roll speed, ribbon density, and tensile strength. The custom-made belt conveying system was used to simulate the ribbon manufacturing process for NIR spectra capture. Simulation results obtained were then compared with the experimental results. The outcome of this study indicated that QR 400 was the best NIR probe for modeling, followed by QR 200 and QR 600. Of the five spectra measuring distance settings (d = 0.3, 0.6, 0.9, 1.2, and 1.5 mm), there was good correlation between simulation and experimental findings indicating that the calibration models for bigger probe sizes were better if the measuring distance was smaller.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app